Dataset: Election Study 1987 (Panel Study)

Variable V341: 2:OCCUPATIONAL GROUP

Literal Question

S.H (If R is or was employed) To which of these occupational
groups do you (or did you) belong?
(Interviewer: Hand list S.3 to the respondent)
01. Self-employed - lower level (e.g., small shop
keeper, craftsman)
02. Self-employed - medium level (e.g., proprietor of a
larger store, chief sales representative)
03. Owner or executive of a large business
04. Professional
05. Salaried white-collar employee - lower level (e.g.,
sales clerk, secretary)
06. Salaried white-collar employee - medium level
(e.g., accountant, cashier)
07. Salaried white-collar employee with university
education ('wissenschaftliche Angestellte')
08. Salaried white-collar employee in a managerial
position (e.g., department head, direction)
09. Civil servant - low level ('Beamte des einfachen
Dienstes')
10. Civil servant - medium level ('Beamte des mittleren
Dienstes')
11. Civil servant - high level ('Beamte des gehobenen
Dienstes')
12. Civil servant - highest level ('Beamte des hoeheren
Dienstes')
13. Semi-skilled or unskilled worker
14. Skilled worker
15. Farm worker
16. Farmer, small farm
17. Farmer, medium-sized farm
18. Farmer, large farm
98. NA
99. INAP., coded 07-10 in S.G
00. No second wave interview



German Question Text

Values Categories N
1 KLEINERE SELBST 68
 4.9%
2 MITTLERE SELBST 21
 1.5%
3 GROESSERE SELBSTAEND 0
 0.0%
4 FREIE BERUFE 15
 1.1%
5 AUSFUEHRENDE ANGEST 288
 20.7%
6 QUALIF. ANGESTELLTE 270
 19.4%
7 WISSENSCH. ANGEST 25
 1.8%
8 LEITENDE ANGESTELLTE 38
 2.7%
9 BEAMTE, EINFACH 20
 1.4%
10 BEAMTE, MITTLERER 39
 2.8%
11 BEAMTE, GEHOBENER 37
 2.7%
12 BEAMTE, HOEHERER 18
 1.3%
13 UNGELERNTE 183
 13.1%
14 FACHARBEITER 338
 24.3%
15 LANDARBEITER 6
 0.4%
16 KL. LANDWIRTE 15
 1.1%
17 MITTLERE LANDWIRTE 9
 0.6%
18 GROSSE LANDWIRTE 2
 0.1%
0 NICHT BEFRAGT 410
98 6
99 TNZ 146

Summary Statistics

Valid cases 1392
Missing cases 562
This variable is numeric

Download

Metadata Index

This is the Metadata Index for a Nesstar Server.
Nesstar is a tool used for analysing, visualising and downloading datasets.

Click the "Explore Dataset" button to open the dataset.